If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x-72=0
a = 4; b = 24; c = -72;
Δ = b2-4ac
Δ = 242-4·4·(-72)
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24\sqrt{3}}{2*4}=\frac{-24-24\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24\sqrt{3}}{2*4}=\frac{-24+24\sqrt{3}}{8} $
| 12+w=40 | | 15x-13=8x-6 | | 8y-3y=2y | | 10m=10-(m-7) | | b+22=89 | | -6(3s-9)=-23-7s | | w-7=41 | | 15x-(6x+5)-3-(x+3)=-(7x+23)-x-(3-2x) | | 5.5g+8=3.5g+18 | | 9-7x=49 | | 10x-4+5x=-2(x+14)+14x | | 8x+3=20;x | | -29=4x-35 | | 8x+3=19;x | | 6+4(5-3x)=13 | | 4x+3=21;x | | (15/4)=r+(1/8) | | 4x+3=19;x | | 2x+3=21;x | | 15/4=r+(1/8) | | -30-(x-6)=18(x+11) | | 3x+10+3x-25=180 | | -35-0.5m=-12 | | x+21=56 | | 3r+2-7r=-10 | | (2*5)+5x=29 | | 7x+8-9x=13-16x+14x-5 | | k/2−1=1 | | n=15-2n | | k/2− 1=1 | | d/3+6=8 | | 23x-5-12x+2=22x-5-11x+16 |